Information (Mar 2022)
Shrink and Eliminate: A Study of Post-Training Quantization and Repeated Operations Elimination in RNN Models
Abstract
Recurrent neural networks (RNNs) are neural networks (NN) designed for time-series applications. There is a growing interest in running RNNs to support these applications on edge devices. However, RNNs have large memory and computational demands that make them challenging to implement on edge devices. Quantization is used to shrink the size and the computational needs of such models by decreasing weights and activation precision. Further, the delta networks method increases the sparsity in activation vectors by relying on the temporal relationship between successive input sequences to eliminate repeated computations and memory accesses. In this paper, we study the effect of quantization on LSTM-, GRU-, LiGRU-, and SRU-based RNN models for speech recognition on the TIMIT dataset. We show how to apply post-training quantization on these models with a minimal increase in the error by skipping quantization of selected paths. In addition, we show that the quantization of activation vectors in RNNs to integer precision leads to considerable sparsity if the delta networks method is applied. Then, we propose a method for increasing the sparsity in the activation vectors while minimizing the error and maximizing the percentage of eliminated computations. The proposed quantization method managed to compress the four models more than 85%, with an error increase of 0.6, 0, 2.1, and 0.2 percentage points, respectively. By applying the delta networks method to the quantized models, more than 50% of the operations can be eliminated, in most cases with only a minor increase in the error. Comparing the four models to each other under the quantization and delta networks method, we found that compressed LSTM-based models are the most-optimum solutions at low-error-rates constraints. The compressed SRU-based models are the smallest in size, suitable when higher error rates are acceptable, and the compressed LiGRU-based models have the highest number of eliminated operations.
Keywords