BMC Cancer (Mar 2019)
Analytical validation of CanAssist-Breast: an immunohistochemistry based prognostic test for hormone receptor positive breast cancer patients
Abstract
Abstract Background CanAssist-Breast is an immunohistochemistry based test that predicts risk of distant recurrence in early-stage hormone receptor positive breast cancer patients within first five years of diagnosis. Immunohistochemistry gradings for 5 biomarkers (CD44, ABCC4, ABCC11, N-Cadherin and pan-Cadherins) and 3 clinical parameters (tumor size, tumor grade and node status) of 298 patient cohort were used to develop a machine learning based statistical algorithm. The algorithm generates a risk score based on which patients are stratified into two groups, low- or high-risk for recurrence. The aim of the current study is to demonstrate the analytical performance with respect to repeatability and reproducibility of CanAssist-Breast. Methods All potential sources of variation in CanAssist-Breast testing involving operator, run and observer that could affect the immunohistochemistry performance were tested using appropriate statistical analysis methods for each of the CanAssist-Breast biomarkers using a total 309 samples. The cumulative effect of these variations in the immunohistochemistry gradings on the generation of CanAssist-Breast risk score and risk category were also evaluated. Intra-class Correlation Coefficient, Bland Altman plots and pair-wise agreement were performed to establish concordance on IHC gradings, risk score and risk categorization respectively. Results CanAssist-Breast test exhibited high levels of concordance on immunohistochemistry gradings for all biomarkers with Intra-class Correlation Coefficient of ≥0.75 across all reproducibility and repeatability experiments. Bland-Altman plots demonstrated that agreement on risk scores between the comparators was within acceptable limits. We also observed > 90% agreement on risk categorization (low- or high-risk) across all variables tested. Conclusions The extensive analytical validation data for the CanAssist-Breast test, evaluating immunohistochemistry performance, risk score generation and risk categorization showed excellent agreement across variables, demonstrating that the test is robust.
Keywords