Journal of Fungi (Jul 2021)

Prediction of Genetic Groups within <i>Brettanomyces bruxellensis</i> through Cell Morphology Using a Deep Learning Tool

  • Manon Lebleux,
  • Emmanuel Denimal,
  • Déborah De Oliveira,
  • Ambroise Marin,
  • Nicolas Desroche,
  • Hervé Alexandre,
  • Stéphanie Weidmann,
  • Sandrine Rousseaux

DOI
https://doi.org/10.3390/jof7080581
Journal volume & issue
Vol. 7, no. 8
p. 581

Abstract

Read online

Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.

Keywords