International Journal of Metrology and Quality Engineering (Jan 2019)
Integrated control performance of drive-by-wire independent drive electric vehicle
Abstract
In order to improve the stability and safety of vehicles, it is necessary to control them. In this study, the integrated control method of drive-by-wire independent drive electric vehicle was studied. Firstly, the reference model of electric vehicle was established. Then, an integrated control method of acceleration slip regulation (ARS) and direct yaw moment control (DYC) was designed for controlling the nonlinearity of tyre, and the simulation experiment was carried out under the environment of MATLAB/SIMULINK. The results showed that the vehicle lost its stability when it was uncontrolled; under the control of a single DYC controller, r and β values got some control, but the vehicle stability was still low; under the integrated control of ARS+DYC, the vehicle stability was significantly improved; under the integrated control method, the overshoot, regulation time and steady-state error of the system were all small. Under the simulation of extreme conditions, the integrated control method also showed excellent performance, which suggested the method was reliable. The experimental results suggests the effectiveness of the integrated control method, which makes some contributions to the further research of the integrated control of electric vehicles.
Keywords