PLoS ONE (Jan 2012)
Bone marrow-infiltrating human neuroblastoma cells express high levels of calprotectin and HLA-G proteins.
Abstract
Metastases in the bone marrow (BM) are grim prognostic factors in patients with neuroblastoma (NB). In spite of extensive analysis of primary tumor cells from high- and low-risk NB patients, a characterization of freshly isolated BM-infiltrating metastatic NB cells is still lacking. Our aim was to identify proteins specifically expressed by metastatic NB cells, that may be relevant for prognostic and therapeutic purposes. Sixty-six Italian children over 18 months of age, diagnosed with stage 4 NB, were included in the study. Metastatic NB cells were freshly isolated from patients' BM by positive immunomagnetic bead manipulation using anti-GD2 monoclonal antibody. Gene expression profiles were compared with those obtained from archived NB primary tumors from patients with 5 y-follow-up. After validation by RT-qPCR, expression/secretion of the proteins encoded by the up-regulated genes in the BM-infiltrating NB cells was evaluated by flow cytometry and ELISA. Compared to primary tumor cells, BM-infiltrating NB cells down-modulated the expression of CX3CL1, AGT, ATP1A2 mRNAs, whereas they up-regulated several genes commonly expressed by various lineages of BM resident cells. BM-infiltrating NB cells expressed indeed the proteins encoded by the top-ranked genes, S100A8 and A9 (calprotectin), CD177 and CD3, and secreted the CXCL7 chemokine. BM-infiltrating NB cells also expressed CD271 and HLA-G. We have identified proteins specifically expressed by BM-infiltrating NB cells. Among them, calprotectin, a potent inflammatory protein, and HLA-G, endowed with tolerogenic properties facilitating tumor escape from host immune response, may represent novel biomarkers and/or targets for therapeutic intervention in high-risk NB patients.