Forests (Feb 2020)

Root Traits and Biomechanical Properties of Three Tropical Pioneer Tree Species for Forest Restoration in Landslide Areas

  • Jung-Tai Lee,
  • Ming-Yang Chu,
  • Yu-Syuan Lin,
  • Kuan-Ning Kung,
  • Wen-Chi Lin,
  • Ming-Jen Lee

DOI
https://doi.org/10.3390/f11020179
Journal volume & issue
Vol. 11, no. 2
p. 179

Abstract

Read online

Frequent earthquakes, monsoon torrential rains and typhoons cause severe landslides and soil erosion in Taiwan. Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus are major pioneer tree species appearing on landslide-scarred areas. Thus, these species can be used to restore the self-sustaining native vegetation on forest landslides, to control erosion, and to stabilize slope. However, their growth performance, root traits and biomechanical properties have not been well characterized. In this study, root system and root traits were investigated using the excavation method, and biomechanical tests were performed to determine the uprooting resistance, root tensile strength and Young’s modulus of 1-year-old Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus seedlings. The results reveal that relative to H. taiwanensis, M. tanarius and M. paniculatus seedlings had significantly larger root collar diameter, longer taproot length, higher root biomass, higher root density, higher root length density, heavier root mass, larger external root surface area, higher root tissue density, larger root volume, longer total root length, and a higher root tip number. Additionally, the height of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Furthermore, the uprooting resistance and root tensile strength of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Young’s modulus of M. paniculatus and M. tanarius seedlings was also significantly higher than that of H. taiwanensis. These growth characteristics and biomechanical properties demonstrate M. paniculatus and M. tanarius are superior than H. taiwanensis, considering growth performance, root anchorage capability, tensile strength and Young’s modulus. Taken as a whole, the rank order for species selection of these pioneer species for reforestation comes as: M. paniculatus M. tanarius H. taiwanensis. These results, along with knowledge on vegetation dynamics following landslides, allow us to better evaluate the effect of selective removal management of pioneer species on the resilience and sustainability of landslides.

Keywords