Frontiers in Psychology (Feb 2024)

Ambient and focal attention during complex problem-solving: preliminary evidence from real-world eye movement data

  • Yuxuan Guo,
  • Sebastian Pannasch,
  • Jens R. Helmert,
  • Aleksandra Kaszowska

DOI
https://doi.org/10.3389/fpsyg.2024.1217106
Journal volume & issue
Vol. 15

Abstract

Read online

Time course analysis of eye movements during free exploration of real-world scenes often reveals an increase in fixation durations together with a decrease in saccade amplitudes, which has been explained within the two visual systems approach, i.e., a transition from ambient to focal. Short fixations and long saccades during early viewing periods are classified as ambient mode of vision, which is concerned with spatial orientation and is related to simple visual properties such as motion, contrast, and location. Longer fixations and shorter saccades during later viewing periods are classified as focal mode of vision, which is concentrated in the foveal projection and is capable of object identification and its semantic categorization. While these findings are mainly obtained in the context of image exploration, the present study endeavors to investigate whether the same pattern of interplay between ambient and focal visual attention is deployed when people work on complex real-world tasks—and if so, when? Based on a re-analysis of existing data that integrates concurrent think aloud and eye tracking protocols, the present study correlated participants’ internal thinking models to the parameters of their eye movements when they planned solutions to an open-ended design problem in a real-world setting. We hypothesize that switching between ambient and focal attentional processing is useful when solvers encounter difficulty compelling them to shift their conceptual direction to adjust the solution path. Individuals may prefer different attentional strategies for information-seeking behavior, such as ambient-to-focal or focal-to-ambient. The observed increase in fixation durations and decrease in saccade amplitudes during the periods around shifts in conceptual direction lends support to the postulation of the ambient-to-focal processing; however, focal-to-ambient processing is not evident. Furthermore, our data demonstrate that the beginning of a shift in conceptual direction is observable in eye movement behavior with a significant prolongation of fixation. Our findings add to the conclusions drawn from laboratory settings by providing preliminary evidence for ambient and focal processing characteristics in real-world problem-solving.

Keywords