Scientific Reports (Feb 2024)

Endotracheal tubes with dexamethasone eluting electrospun coating improve tissue mechanical function after upper airway injury

  • Gabriela Gonzales,
  • Ronit Malka,
  • Lisa Marinelli,
  • Christine M. Lee,
  • Solaleh Miar,
  • Stacy Cook,
  • Gregory R. Dion,
  • Teja Guda

DOI
https://doi.org/10.1038/s41598-024-53328-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Corticosteroid-eluting endotracheal tubes (ETTs) were developed and employed in a swine laryngotracheal injury model to maintain airway patency and provide localized drug delivery to inhibit fibrotic scarring. Polycaprolactone (PCL) fibers with or without dexamethasone were electrospun onto the ETT surface PCL-only coated ETTs and placed in native airways of 18 Yorkshire swine. Regular and dexamethasone-PCL coated ETTs were placed in airways of another 18 swine injured by inner laryngeal mucosal abrasion. All groups were evaluated after 3, 7 and 14 days (n = 3/treatment/time). Larynges were bisected and localized stiffness determined by normal indentation, then sequentially matched with histological assessment. In the native airway, tissue stiffness with PCL-only ETT placement increased significantly from 3 to 7 days (p = 0.0016) and 3 to 14 days (p < 0.0001) while dexamethasone-PCL ETT placement resulted in stiffness decreasing from 7 to 14 days (p = 0.031). In the injured airway, localized stiffness at 14 days was significantly greater after regular ETT placement (23.1 ± 0.725 N/m) versus dexamethasone-PCL ETTs (17.10 ± 0.930 N/m, p < 0.0001). Dexamethasone-loaded ETTs were found to reduce laryngotracheal tissue stiffening after simulated intubation injury compared to regular ETTs, supported by a trend of reduced collagen in the basement membrane in injured swine over time. Findings suggest localized corticosteroid delivery allows for tissue stiffness control and potential use as an approach for prevention and treatment of scarring caused by intubation injury.