Pharmaceutics (Jan 2023)

Influence of Lenvatinib on the Functional Reprogramming of Peripheral Myeloid Cells in the Context of Non-Medullary Thyroid Carcinoma

  • Chunying Peng,
  • Katrin Rabold,
  • Mihai G. Netea,
  • Martin Jaeger,
  • Romana T. Netea-Maier

DOI
https://doi.org/10.3390/pharmaceutics15020412
Journal volume & issue
Vol. 15, no. 2
p. 412

Abstract

Read online

Lenvatinib is a multitarget tyrosine kinase inhibitor (TKI) approved for the treatment of several types of cancers, including metastatic differentiated thyroid cancer (DTC). The intended targets include VEGFR 1–3, FGFR 1–4, PDGFRα, RET, and KIT signaling pathways, but drug resistance inevitably develops and a complete cure is very rare. Recent data has revealed that most of the TKIs have additional ‘off-target’ immunological effects, which might contribute to a protective antitumor immune response; however, human cellular data are lacking regarding Lenvatinib-mediated immunomodulation in DTC. Here, we investigated in ex vivo models the impact of Lenvatinib on the function of immune cells in healthy volunteers. We found that monocytes and macrophages were particularly susceptible to Lenvatinib, while neutrophiles and lymphocytes were less affected. In tumor-immune cell co-culture experiments, Lenvatinib exerted a broad inhibitory effect on the proinflammatory response in TC-induced macrophages. Interestingly, Lenvatinib-treated cells had decreased cellular M2 membrane markers, whereas they secreted a significantly higher level of the anti-inflammatory cytokine IL-10 upon LPS stimulation. In addition, prolonged exposure to Lenvatinib impaired macrophages survival and phenotypical differentiation, which was accompanied by remarkable morphological changes and suppressed cellular metabolic activity. These effects were mediated by myeloid cell-intrinsic mechanisms which are independent of Lenvatinib’s on-target activity. Finally, using specific inhibitors, we argue that dual effects on p38 MAPK and Syk pathways are likely the underlying mechanism of the off-target immunological effects we observed in this study. Collectively, our data show the immunomodulatory properties of Lenvatinib on human monocytes. These insights could be harnessed for the future design of novel treatment strategies involving a combination of Lenvatinib with other immunotherapeutic agents.

Keywords