Electron Capture from Molecular Hydrogen by Metastable Sn<sup>2</sup><sup>+</sup>* Ions
Klaas Bijlsma,
Lamberto Oltra,
Emiel de Wit,
Luc Assink,
Ismanuel Rabadán,
Luis Méndez,
Ronnie Hoekstra
Affiliations
Klaas Bijlsma
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Lamberto Oltra
Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión, Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
Emiel de Wit
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Luc Assink
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Ismanuel Rabadán
Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión, Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
Luis Méndez
Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión, Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
Ronnie Hoekstra
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Over a wide and partly overlapping energy range, the single-electron capture cross-sections for collisions of metastable Sn2+(5s5p Po3) (Sn2+∗) ions with H2 molecules were measured (0.1–10 keV) and calculated (0.3–1000 keV). The semi-classical calculations use a close-coupling method on a basis of electronic wavefunctions of the (SnH2)2+ system. The experimental cross-sections were extracted from double collisions in a crossed-beam experiment of Sn3+ with H2. The measured capture cross-sections for Sn2+∗ show good agreement with the calculations between 2 and 10 keV, but increase toward lower energies, whereas the calculations decrease. Additional Landau–Zener calculations were performed and show that the inclusion of spin-orbit splitting cannot explain the large cross-sections at the lowest energies which we now assume to be likely due to vibrational effects in the molecular hydrogen target.