Scientific Reports (Feb 2022)
Ultrahigh efficient spin orbit torque magnetization switching in fully sputtered topological insulator and ferromagnet multilayers
Abstract
Abstract Spin orbit torque (SOT) magnetization switching of ferromagnets with large perpendicular magnetic anisotropy has a great potential for the next generation non-volatile magnetoresistive random-access memory (MRAM). It requires a high performance pure spin current source with a large spin Hall angle and high electrical conductivity, which can be fabricated by a mass production technique. In this work, we demonstrate ultrahigh efficient and robust SOT magnetization switching in fully sputtered BiSb topological insulator and perpendicularly magnetized Co/Pt multilayers. Despite fabricated by the magnetron sputtering instead of the laboratory molecular beam epitaxy, the topological insulator layer, BiSb, shows a large spin Hall angle of θ SH = 10.7 and high electrical conductivity of σ = 1.5 × 105 Ω−1 m−1. Our results demonstrate the feasibility of BiSb topological insulator for implementation of ultralow power SOT-MRAM and other SOT-based spintronic devices.