Separations (Aug 2020)
Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics
Abstract
This study presents the synthesis of a novel asymmetric 1,3-di(alkoxy)imidazolium based room temperature ionic liquid, more precisely 1-butoxy-3-ethoxy-2-ethyl-imidazolium bis(trifluoromethane)sulfonimide, and its application as an extraction solvent in liquid-phase microextraction of cannabidiol from natural cosmetics. Quantification was implemented, using a high performance liquid chromatography system coupled to ultraviolet detection. Molecular structure elucidation was performed by nuclear magnetic resonance spectroscopy. The extraction procedure was optimized by means of two different design of experiments. Additionally, a full validation was executed. The established calibration model, ranging from 0.6 to 6.0 mg g−1, was linear with a coefficient of determination of 0.9993. Accuracy and precision were demonstrated on four consecutive days with a bias within −2.6 to 2.3% and a maximum relative standard deviation value of 2.5%. Recoveries, tested for low and high concentration within the calibration range, were 80%. Stability of extracted cannabidiol was proven for three days at room temperature and fourteen days at 4 °C and −20 °C. An autosampler stability for 24 h was validated. Liquid-phase microextraction of cannabidiol from different formulated cream based cosmetics was performed, including four ointments and four creams. The results show that a significantly higher selectivity could be achieved compared to a conventional extraction methods with methanol.
Keywords