Biomedicine & Pharmacotherapy (May 2024)

Characterization of the structure, anti-inflammatory activity and molecular docking of a neutral polysaccharide separated from American ginseng berries

  • Qixiang Feng,
  • Huijiao Yan,
  • Yu Feng,
  • Li Cui,
  • Hidayat Hussain,
  • Jeong Hill Park,
  • Sung Won Kwon,
  • Lei Xie,
  • Yan Zhao,
  • Zhihao Zhang,
  • Jinfan Li,
  • Daijie Wang

Journal volume & issue
Vol. 174
p. 116521

Abstract

Read online

Aim: American ginseng berries, grown in the aerial parts and harvested in August, are a potentially valuable material. The aim of the study was to analyze the specific polysaccharides in American ginseng berries, and to demonstrate the anti-inflammation effect through in vitro and in vivo experiments and molecular docking. Methods: After deproteinization and dialysis, the extracted crude polysaccharide was separated and purified. The structure of the specific isolated polysaccharide was investigated by Fourier Transform infrared spectroscopy (FT-IR), GC-MS and nuclear magnetic resonance (NMR), and anti-inflammatory activity was evaluated using in vitro and in vivo models (Raw 264.7 cells and zebrafish). Molecular docking was used to analyze the binding capacity and interaction with cyclooxygenase-2 (COX-2). Results: A novel neutral polysaccharide fraction (AGBP-A) was isolated from American ginseng berries. The structural analysis demonstrated that AGBP-A had a weight-average molecular weight (Mw) of 122,988 Da with a dispersity index (Mw/Mn) value of 1.59 and was composed of arabinose and galactose with a core structure containing →6)-Gal-(1→ residues as the backbone and a branching substitution at the C3 position. The side-chains comprised of α-L-Ara-(1→, α-L-Ara-(1→, →5)-α-L-Ara-(1→, β-D-Gal-(1→. The results showed that it significantly decreased pro-inflammatory cytokines in the cell model. In a zebrafish model, AGBP-A reduced the massive recruitment of neutrophils to the caudal lateral line neuromast, suggesting the relief of inflammation. Molecular docking was used to analyze the combined capacity and interaction with COX-2. Conclusion: Our study indicated the potential efficacy of AGBP-A as a safe and valid natural anti-inflammatory component.

Keywords