Advances in Mechanical Engineering (Dec 2015)
Planetary gearbox fault feature enhancement based on combined adaptive filter method
Abstract
The reliability of vibration signals acquired from a planetary gear system (the indispensable part of wind turbine gearbox) is directly related to the accuracy of fault diagnosis. The complex operation environment leads to lots of interference signals which are included in the vibration signals. Furthermore, both multiple gears meshing with each other and the differences in transmission rout produce strong nonlinearity in the vibration signals, which makes it difficult to eliminate the noise. This article presents a combined adaptive filter method by taking a delayed signal as reference signal, the Self-Adaptive Noise Cancellation method is adopted to eliminate the white noise. In the meanwhile, by applying Gaussian function to transform the input signal into high-dimension feature-space signal, the kernel least mean square algorithm is used to cancel the nonlinear interference. Effectiveness of the method has been verified by simulation signals and test rig signals. By dealing with simulation signal, the signal-to-noise ratio can be improved around 30 dB (white noise) and the amplitude of nonlinear interference signal can be depressed up to 50%. Experimental results show remarkable improvements and enhance gear fault features.