Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress
Stephanie Munk,
Jón Otti Sigurðsson,
Zhenyu Xiao,
Tanveer Singh Batth,
Giulia Franciosa,
Louise von Stechow,
Andres Joaquin Lopez-Contreras,
Alfred Cornelis Otto Vertegaal,
Jesper Velgaard Olsen
Affiliations
Stephanie Munk
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Center for Chromosome Stability and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Jón Otti Sigurðsson
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Zhenyu Xiao
Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
Tanveer Singh Batth
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Giulia Franciosa
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Louise von Stechow
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Andres Joaquin Lopez-Contreras
Center for Chromosome Stability and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Alfred Cornelis Otto Vertegaal
Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Corresponding author
Jesper Velgaard Olsen
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Corresponding author
Summary: The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM)-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers) has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity. : Munk et al. use mass spectrometry-based proteomics to analyze the interplay between SUMOylation and phosphorylation in replication stress. They analyze changes in the SUMO and phosphoproteome after MMC and hydroxyurea treatments and find that the DNA damage response kinases ATR and ATM globally regulate SUMOylation upon replication stress and fork breakage. Keywords: Replication stress, quantitative proteomics, phosphoproteomics, SUMO, ATR, ATM, TOPBP1, MMC, kinase inhibitors, hydroxyurea