Journal of Experimental Orthopaedics (Sep 2017)

Morphological changes in tibial tunnels after anatomic anterior cruciate ligament reconstruction with hamstring tendon graft

  • Tomoki Ohori,
  • Tatsuo Mae,
  • Konsei Shino,
  • Yuta Tachibana,
  • Kazuomi Sugamoto,
  • Hideki Yoshikawa,
  • Ken Nakata

DOI
https://doi.org/10.1186/s40634-017-0104-6
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Three-dimensional (3D) reconstructed computed tomography (CT) is crucial for the reliable and accurate evaluation of tunnel enlargement after anterior cruciate ligament (ACL) reconstruction. The purposes of this study were to evaluate the tibial tunnel enlargement at the tunnel aperture and inside the tunnel and to clarify the morphological change at the tunnel footprint 1 year after the anatomic triple-bundle (ATB) ACL reconstruction using 3D CT models. Methods Eighteen patients with unilateral ACL rupture were evaluated. The ATB ACL reconstruction with a semitendinosus tendon autograft was performed. 3D computer models of the tibia and the three tibial tunnels were reconstructed from CT data obtained 3 weeks and 1 year after surgery. The cross-sectional areas (CSAs) of the two anterior and the one posterior tunnels were measured at the tunnel aperture and 5 and 10 mm distal from the aperture and compared between the two periods. The locations of the center and the anterior, posterior, medial, and lateral edges of each tunnel footprint were also measured and compared between the two periods. Results The CSA of the posterior tunnel was significantly enlarged at the aperture by 40.4%, whereas that of the anterior tunnels did not change significantly, although the enlargement rate was 6.1%. On the other hand, the CSA was significantly reduced at 10 mm distal from the aperture in the anterior tunnels. The enlargement rate in the posterior tunnel was significantly greater than that in the anterior tunnels at the aperture. The center of the posterior tunnel footprint significantly shifted postero-laterally. The anterior and posterior edges of the posterior tunnel footprint demonstrated a significant posterior shift, while the lateral edge significantly shifted laterally. There was no significant shift of the center or all the edges of the anterior tunnels footprint. Conclusions The posterior tibial tunnel was significantly enlarged at the aperture by 40% with the morphological change in the postero-lateral direction reflected by the ACL fiber orientation 1 year after the ATB ACL reconstruction. The proper tibial tunnel location in the ACL reconstruction should be determined considering the tunnel enlargement in postero-lateral direction after surgery.

Keywords