Communications Physics (Jan 2024)

Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides

  • Roman Lucrezi,
  • Pedro P. Ferreira,
  • Samad Hajinazar,
  • Hitoshi Mori,
  • Hari Paudyal,
  • Elena R. Margine,
  • Christoph Heil

DOI
https://doi.org/10.1038/s42005-024-01528-6
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH6 and CaH6, and to the covalently-bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H3S and BaSiH8 within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.