Food Chemistry: X (Jun 2024)

Role of lingonberry press cake in producing stable herring protein isolates via pH-shift processing: A dose response study

  • Jingnan Zhang,
  • Bovie Hong,
  • Mehdi Abdollahi,
  • Haizhou Wu,
  • Ingrid Undeland

Journal volume & issue
Vol. 22
p. 101456

Abstract

Read online

The effects of cross-processing lingonberry press cake (LPC) (2.5–30 %, dw/dw) with herring co-products on protein yield, oxidative stability and color of pH-shift-produced protein isolates were investigated. Even at 2.5 % LPC, the formation of volatile oxidation-derived aldehydes, including hexanal, (E)-2-hexenal, heptanal, octanal, and 2,4-heptadienal, were prevented during the actual protein isolate production. Adding 10 % LPC successfully prevented formation of all these aldehydes also during eight days ice storage which was explained by the partitioning of phenolics, especially ideain (1.09 mg/g dw) and procyanidin A1 (65.5 mg/g dw), into isolates. Although higher amounts of LPC (20–30 %) further prolonged the oxidation lag phase, it reduced total protein yield, increased the consumption of acid and base, and darkened protein isolates. Therefore, it is recommended to use 10 % LPC when pH-shift-processing sensitive fish raw materials as a route to mitigate lipid oxidation and at the same time promote industrial symbiosis and more circular food production.

Keywords