Abstract Currently, no specific treatments are available for Alzheimer's disease (AD). Mild cognitive impairment (MCI), the preclinical stage of AD, has a high possibility of reversing symptoms through neural regulation. A state dynamics model for single brain regions was developed to simulate blood oxygen level‐dependent signals in a patient with early mild cognitive impairment. Subsequently, the analysis of functional connections was used to comprehensively consider multiple complex network centralities to locate the intervention targets, and a multiple brain region collaborative control scheme was designed. Finally, the reliability and effectiveness of the intervention were verified at the brain region and subnetwork levels. This technique provides a basis for future clinical diagnosis and treatment of AD and MCI.