Biologically Active Extracts from Different Medicinal Plants Tested as Potential Additives against Bee Pathogens
Claudia Pașca,
Ioana Adriana Matei,
Zorița Diaconeasa,
Ancuța Rotaru,
Silvio Erler,
Daniel Severus Dezmirean
Affiliations
Claudia Pașca
Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
Ioana Adriana Matei
Department of Microbiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
Zorița Diaconeasa
Department of Chemistry, Biochemistry and Molecular Biology, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
Ancuța Rotaru
Department of Fundamental Science, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine 3-5, 400372 Cluj-Napoca, Romania
Silvio Erler
Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany
Daniel Severus Dezmirean
Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
Honey bees (Apis mellifera) perform pollination service for many agricultural crops and contribute to the global economy in agriculture and bee products. However, honey bee health is an ongoing concern, as illustrated by persistent local population decline, caused by some severe bee diseases (e.g., nosemosis, AFB, EFB, chalkbrood). Three natural recipes are in development based on the bioactive compounds of different plants extract (Agastache foeniculum, Artemisia absinthium, Evernia prunastri, Humulus lupulus, Laurus nobilis, Origanum vulgare and Vaccinium myrtillus), characterised by HPLC-PDA. The antimicrobial activity of these recipes was tested in vitro against Paenibacillus larvae, Paenibacillus alvei, Brevibacillus laterosporus, Enterococcus faecalis, Ascosphaera apis and in vivo against Nosema ceranae. A mix of 20% blueberry, 40% absinthium, 10% oakmoss, 10% oregano, 10% Brewers Gold hops, 5% bay laurel and 5% anise hyssop extract showed the strongest antibacterial and antifungal activity. Combing several highly active plant extracts might be an alternative treatment against bee-disease-associated parasites and pathogens, in particular to replace synthetic antibiotics.