Opuscula Mathematica (Jan 2014)

On a singular nonlinear Neumann problem

  • Jan Chabrowski

DOI
https://doi.org/10.7494/OpMath.2014.34.2.271
Journal volume & issue
Vol. 34, no. 2
pp. 271 – 290

Abstract

Read online

We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: \(\text{(i)}\;\ 2\lt p+1\lt 2^*(s),\) \(\text{(ii)}\;\ p+1=2^*(s)\) and \(\text{(iii)}\;\ 2^*(s)\lt p+1 \leq 2^*,\) where \(2^*(s)=\frac{2(N-s)}{N-2},\) \(0\lt s\lt 2,\) and \(2^*=\frac{2N}{N-2}\) denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively.

Keywords