Journal of the Serbian Chemical Society (Jan 2013)

Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst

  • Krstajić Mila N.,
  • Obradović Maja D.,
  • Babić Biljana M.,
  • Radmilović Velimir R.,
  • Lačnjevac Uroš Č.,
  • Krstajić Nedeljko V.,
  • Gojković Snežana Lj.

DOI
https://doi.org/10.2298/JSC130718091K
Journal volume & issue
Vol. 78, no. 11
pp. 1703 – 1716

Abstract

Read online

The Ru-doped SnO2 powder, (RuxSn1-x)O2, with the Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass% loading). The (RuxSn1-x)O2 support and Pt/(RuxSn1-x)O2 catalyst were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). (RuxSn1-x)O2 was found to be two-phase material consisting of probably solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-x)O2 indicated good conductivity of the sup-port and displayed usual features of Pt. The results of the electrochemical oxidation of COads and methanol on Pt/(RuxSn1-x)O2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-x)O2 starts at less positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicated higher initial activity of Pt/(RuxSn1-x)O2 catalyst compared to PtRu/C, but also a greater loss in the current density over time. Potentiodynamic stability test of the catalysts revealed that deactivation of the Pt/(RuxSn1-x)O2 and Pt/C was primarily caused by the poisoning of Pt surface by the methanol oxidation residues, which mostly occurred during the first potential cycle. In the case of PtRu/C the poisoning of the surface was minor and deactivation was caused by the PtRu surface area loss. [Projekat Ministarstva nauke Republike Srbije, br. ON-172054]

Keywords