Computational based time-resolved multispectral fluorescence microscopy
Alberto Ghezzi,
Armin J. M. Lenz,
Fernando Soldevila,
Enrique Tajahuerce,
Vito Vurro,
Andrea Bassi,
Gianluca Valentini,
Andrea Farina,
Cosimo D’Andrea
Affiliations
Alberto Ghezzi
Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, 20133 Milano, Italy
Armin J. M. Lenz
GROC-UJI, Institute of New Imaging Technologies (INIT), Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castelló, Spain
Fernando Soldevila
Laboratoire Kastler Brossel, École Normale Supérieure – Paris Sciences et Lettres (PSL) Research University, Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005 Paris, France
Enrique Tajahuerce
GROC-UJI, Institute of New Imaging Technologies (INIT), Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castelló, Spain
Vito Vurro
Istituto Italiano di Tecnologia, Center for Nano Science and Technology, via Pascoli 70/3, 20133 Milano, Italy
Andrea Bassi
Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, 20133 Milano, Italy
Gianluca Valentini
Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, 20133 Milano, Italy
Andrea Farina
Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza L. da Vinci 32, 20133 Milano, Italy
Cosimo D’Andrea
Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, 20133 Milano, Italy
Multispectral imaging and time-resolved imaging are two common acquisition schemes in fluorescence microscopy, and their combination can be beneficial to increase specificity. The multidimensionality of the dataset (space, time, and spectrum) introduces some challenges, such as the acquisition of big datasets and long measurement times. In this work, we present a time-resolved multispectral fluorescence microscopy system with a short measurement time, achieved by exploiting Compressive Sensing (CS) based on the Single-Pixel Camera (SPC) scheme. Data Fusion (DF) with a high-resolution camera allows us to tackle the problem of low spatial resolution, typical of SPC. The combined use of SPC, CS, and DF, in which hardware and algorithms are integrated, represents a computational imaging framework to reduce the number of measurements while preserving the information content. This approach has been exploited to demonstrate a zoom feature without moving the optical system. We describe and characterize the system in terms of spatial, spectral, and temporal properties, along with validation on a cellular sample.