Applied Sciences (Feb 2024)

Biomechanical Evaluation of Plantar Pressure Distribution towards a Customized 3D Orthotic Device: A Methodological Case Study through a Finite Element Analysis Approach

  • Jesus Alejandro Serrato-Pedrosa,
  • Guillermo Urriolagoitia-Sosa,
  • Beatriz Romero-Ángeles,
  • Guillermo Manuel Urriolagoitia-Calderón,
  • Salvador Cruz-López,
  • Alejandro Urriolagoitia-Luna,
  • David Esaú Carbajal-López,
  • Jonathan Rodolfo Guereca-Ibarra,
  • Guadalupe Murillo-Aleman

DOI
https://doi.org/10.3390/app14041650
Journal volume & issue
Vol. 14, no. 4
p. 1650

Abstract

Read online

Plantar pressure distribution is a thoroughly recognized parameter for evaluating foot structure and biomechanical behavior, as it is utilized to determine musculoskeletal conditions and diagnose foot abnormalities. Experimental testing is currently being utilized to investigate static foot conditions using invasive and noninvasive techniques. These methods are usually expensive and laborious, and they lack valuable data since they only evaluate compressive forces, missing the complex stress combinations the foot undergoes while standing. The present investigation applied medical and engineering methods to predict pressure points in a healthy foot soft tissue during normal standing conditions. Thus, a well-defined three-dimensional foot biomodel was constructed to be numerically analyzed through medical imaging. Two study cases were developed through a structural finite element analysis. The first study was developed to evaluate barefoot behavior deformation and stresses occurring in the plantar region. The results from this analysis were validated through baropodometric testing. Subsequently, a customized 3D model total-contact foot orthosis was designed to redistribute peak pressures appropriately, relieving the plantar region from excessive stress. The results in the first study case successfully demonstrated the prediction of the foot sole regions more prone to suffer a pressure concentration since the values are in good agreement with experimental testing. Employing a customized insole proved to be highly advantageous in fulfilling its primary function, reducing peak pressure points substantially. The main aim of this paper was to provide more precise insights into the biomechanical behavior of foot pressure points through engineering methods oriented towards innovative assessment for absolute customization for orthotic devices.

Keywords