PLoS ONE (Jan 2019)
NDRA: A single route model of response times in the reading aloud task based on discriminative learning.
Abstract
We present the Naive Discriminative Reading Aloud (ndra) model. The ndra differs from existing models of response times in the reading aloud task in two ways. First, a single lexical architecture is responsible for both word and non-word naming. As such, the model differs from dual-route models, which consist of both a lexical route and a sub-lexical route that directly maps orthographic units onto phonological units. Second, the linguistic core of the ndra exclusively operates on the basis of the equilibrium equations for the well-established general human learning algorithm provided by the Rescorla-Wagner model. The model therefore does not posit language-specific processing mechanisms and avoids the problems of psychological and neurobiological implausibility associated with alternative computational implementations. We demonstrate that the single-route discriminative learning architecture of the ndra captures a wide range of effects documented in the experimental reading aloud literature and that the overall fit of the model is at least as good as that of state-of-the-art dual-route models.