Journal of Materials Research and Technology (Nov 2023)
Investigation of 1-tetradecanol with functionalized multi-walled carbon nanotubes as PCM for high-density thermal energy storage
Abstract
To evaluate a potential thermal battery material for thermal energy storage applications, this study prepared a stable organic nano-dispersed PCM (NDPCM) with 1-tetradecanol (TD) with a melting point and latent heat of 37.8 °C and 236.4 J/g, respectively, as base PCM and investigated its thermal properties. The high thermal conductive nano-additives of functionalized multi-walled carbon nanotubes (MWCNT-COOH) with a concentration range of 1 wt% to 5 wt% were infused in the pure PCM. As a result, MWCNT-COOH shows better dispersion stability. The SEM microimage confirms no agglomeration was observed for the prepared NDPCM. The supercooling was reduced from 10.6 °C for the pure TD to 7.7 °C for TD with 5 wt% of MWCNT. The latent heat of the NDPCM with 5 wt% MWCNT-COOH was 212.6 J/g with a 10% reduction compared to pure TD. The reduction in latent heat values is lower than the previously investigated TD composite PCM. The thermal stability study through gravimetric analysis confirms that the decomposition of the NDPCMs initiates at 200 °C, which will not be affected by thermal fluctuation in the system. The sample with 5 wt% of nano-additives had the most excellent thermal conductivity (TC) improvement, 56.2% in the liquid phase, whereas 50% in the solid phase. The reported values are significantly higher compared to the previous thermal conductivity improvement of TD using metallic nanoparticles. The prepared NDPCM shows better thermal properties than the pure PCM and can be a possible material for high-density thermal energy storage applications.