Entropy (Jun 2020)

What Does the Operator Algebra of Quantum Statistics Tell Us about the Objective Causes of Observable Effects?

  • Holger F. Hofmann

DOI
https://doi.org/10.3390/e22060638
Journal volume & issue
Vol. 22, no. 6
p. 638

Abstract

Read online

Quantum physics can only make statistical predictions about possible measurement outcomes, and these predictions originate from an operator algebra that is fundamentally different from the conventional definition of probability as a subjective lack of information regarding the physical reality of the system. In the present paper, I explore how the operator formalism accommodates the vast number of possible states and measurements by characterizing its essential function as a description of causality relations between initial conditions and subsequent observations. It is shown that any complete description of causality must involve non-positive statistical elements that cannot be associated with any directly observable effects. The necessity of non-positive elements is demonstrated by the uniquely defined mathematical description of ideal correlations which explains the physics of maximally entangled states, quantum teleportation and quantum cloning. The operator formalism thus modifies the concept of causality by providing a universally valid description of deterministic relations between initial states and subsequent observations that cannot be expressed in terms of directly observable measurement outcomes. Instead, the identifiable elements of causality are necessarily non-positive and hence unobservable. The validity of the operator algebra therefore indicates that a consistent explanation of the various uncertainty limited phenomena associated with physical objects is only possible if we learn to accept the fact that the elements of causality cannot be reconciled with a continuation of observable reality in the physical object.

Keywords