Geochemical Transactions (May 2000)
Theoretical studies on metal thioarsenites and thioantimonides: synergistic interactions between transition metals and heavy metalloids
Abstract
Recently we established that the ternary complex, CuAsS(SH)(OH) has an unusually high stability and makes a large contribution to the total concentrations of both Cu and As in sulfidic solutions equilibrated with Cu and As sulfide minerals. This ternary complex has an unusual structure, containing a bond which is formally Cu(I)–As(III), along with a broken As–S bond. We have now found that complexes with similar structures exist for Au+ and Tl+ coordinated to AsS(SH)(OH)-. However, such a direct metal–metalloid bond is not a requirement for stability. In fact, TlAsS(SH)(OH) is unstable while AuAsS(SH)(OH) is highly stable (compared to the aquo ion). Zn2+, Cd2+, Hg2+ and Pb2+ also form bonds to the As of AsS(SH)(OH), but without breaking any As–S bonds, and HgAsS(SH)(OH)+ and PbAsS(SH)(OH)+ are particularly stable complexes. Calculated structures are shown for these complexes, gas-phase energies are calculated, and formation constants in aqueous solution are estimated. The SbS(SH)(OH)- ion forms analogous complexes, with similar stabilities. However, the Au+ complex of SbS(SH)(OH)- is slightly less stable than the Cu+ complex, opposite to the order found for the AsS(SH)(OH)- ligand. The Au+ and AuSH complexes of AsSSHOH- or AsS(SH)2- may be implicated in "invisible gold" in arsenian pyrites. Vibrational frequencies are given for the AuAsS(SH)3- complex and the XANES energies of this complex and Au(SH)2- are compared. The existence of such strong complexes may explain the many correlations observed between the concentrations of coinage metals and metalloids.