Movement Ecology (Jul 2018)

Activity and movement of free-living box turtles are largely independent of ambient and thermal conditions

  • Adam F. Parlin,
  • Jessica A. Nardone,
  • John Kelly Dougherty,
  • Mimi Rebein,
  • Kamran Safi,
  • Paul J. Schaeffer

DOI
https://doi.org/10.1186/s40462-018-0130-8
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Ectotherms are assumed to be strongly influenced by the surrounding ambient and environmental conditions for daily activity and movement. As such, ecological and physiological factors contribute to stimuli influencing navigation, extent of movement, and therefore habitat use. Our study focused on the intensity of activity (from acceleration data) and extent of movement (from GPS and thread trailing data) of Eastern box turtles (Terrapene carolina carolina) in a fragmented landscape near their northern population limit. First, we quantified the thermal performance curve of box turtles using activity as a measure of performance. Second, we investigated ecological factors that could influence activity and movement and characterized the movement as extensive (exploration) and intensive (foraging). Results In contrast to previous lab work investigating effects of temperature on activity, we found no relationship between box turtle activity and temperature in the field. Furthermore, box turtle activity was consistent over a wide range of temperatures. Cluster analysis categorized movement recorded with GPS more as intensive than as extensive, while thread trailing had more movement categorized as extensive than intensive. Box turtle activity was higher during the morning hours and began to decrease as the day progressed. Based on the microclimate conditions tested, we found that box turtle movement was influenced by precipitation and time of day, and activity was most influenced by absolute humidity, ambient temperature, cloud cover, and time of day. Conclusions Our model ectotherm in this study, the Eastern box turtle, had activity patterns characteristic of a thermal generalist. Sampling resolution altered the characterization of movement as intensive or extensive movement, possibly altering interpretation. More information on the resolution needed to definitively identify foraging and exploratory behavior in turtles is needed. Activity and movement were nearly independent of environmental conditions, which supports the overall interpretation that turtle performance is that of a broad environmental generalist. Future studies of movement of other turtle and reptile species are needed to determine the generality of these findings.

Keywords