JNET (Jan 2021)
Clinical Evaluations of the Ischemic Core in Acute Ischemic Stroke Using Modified Diffusion-Weighted Imaging-Alberta Stroke Program Early Computed Tomography Scores by Ischemic Reversibility Using the Signal Intensity
Abstract
Objective: Early recanalization of acute stroke caused by large vessel occlusion (LVO) may improve high signal intensity (HSI) on diffusion-weighted imaging (DWI). In this study, we investigated whether subtraction of reversible ischemic lesions (RIL) from the HSI lesions on DWI improves the diagnostic accuracy for the ischemic core. Methods: A total of 35 patients from April 2013 and December 2019 were included in this study. These patients presented acute ischemic stroke due to anterior circulation LVO and underwent thrombectomy. All patients underwent DWI within 48 hours after thrombectomy. HSI ratios were calculated, and compared between ischemic lesions and contralateral normal tissue. Ischemic lesions with improvement in the HSI ratio from initial to postoperative DWI were defined as RIL. Based on a receiver operating characteristic (ROC) curve analysis that compared the HSI ratio of all ischemic lesions, the cutoff value of HSI ratio of RILs was calculated. Results: In all, 127 ischemic lesions were identified in 35 patients. HSI ratios of RILs were significantly lower than those of irreversible ischemic lesions (IILs) (p <0.0001). Based on a ROC curve analysis that compared the HSI ratio of all 127 lesions, the cutoff value of the HSI ratio of RILs was 1.4. After applying this cutoff value to the 127 ischemic lesions of the 35 patients, 20 patients (57%) were identified as having RILs with a HSI ratio of <1.4. In this 20 patients, the postoperative National Institutes of Health Stroke Scale (NIHSS) score at 24 hours was significantly lower (p = 0.007) and improvement in the NIHSS score was significantly higher (p = 0.018) than in the other patients. Conclusion: A HSI ratio of <1.4 on preoperative DWI may reflect ischemic reversibility. In this study, the HSI ratio correlated with clinical findings associated with cerebral ischemia, and our method may be useful in assessing ischemic cores.
Keywords