Stem Cell Research & Therapy (Sep 2019)

Mechanical process prior to cryopreservation of lipoaspirates maintains extracellular matrix integrity and cell viability: evaluation of the retention and regenerative potential of cryopreserved fat-derived product after fat grafting

  • Jingwei Feng,
  • Wansheng Hu,
  • Mimi Lalrimawii Fanai,
  • Shengqian Zhu,
  • Jing Wang,
  • Junrong Cai,
  • Feng Lu

DOI
https://doi.org/10.1186/s13287-019-1395-6
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Cryopreservation of fat grafts facilitates reinjection for later use. However, low temperature and thawing can disrupt tissues and cause lipid leakage, which raises safety concerns. Here, we compared the cryopreservation potential of stromal vascular fraction (SVF) gel processed from lipoaspirate with that of fat. Methods Human SVF gel and fat were cryopreserved at − 20 °C without cryoprotectant for 1 month. Fresh SVF gel and fat were used as controls. Tissue viability, adipose-derived stem cell (ASC) function, and the extracellular content were evaluated. At 3 months after transplanting the specimens to immunocompromised mice subcutaneously, the grafts were examined for retention, tissue engraftment, and inflammatory levels. The regenerative effect of cryopreserved SVF gel was evaluated in a murine ischemic wound healing model. Results At 1 month, the cell death rate in the SVF gel group was 36 ± 2%. The survived ASCs not only could be isolated via explant culture but also preserved colony-forming and differentiation. However, prolonged cryopreservation exacerbated apoptosis. Assessment of recovered tissues showed that the morphology, cell viability, and extracellular protein enrichment were better in SVF gel-preserved tissues than in frozen fat. At 3 months after lipotransfer, the retention ability of 1-month cryopreserved fat was 41.1 ± 9% compared to that of 1-month cryopreserved SVF gel. Immunostaining results showed that adipose tissue regeneration and integrity in the 1-month cryopreserved SVF gel group were superior to those of the cryopreserved fat group. The cryopreserved SVF gel also accelerated healing of the ischemic wound, compared with cryopreserved fat. Conclusion Cryopreserved SVF gel maintained tissue integrity and cell viability and resulted in a better long-term retention rate than that of cryopreserved fat. Cryopreserved SVF gel also showed superior regenerative potential and improved ischemic wound healing.

Keywords