Parasites & Vectors (Dec 2019)

Diagnosing bovine parafilariosis: utility of the cytochrome c oxidase subunit 1 gene and internal transcribed spacer region for PCR detection of Parafilaria bovicola in skin biopsies and serohemorrhagic exudates of cattle

  • Andreas W. Oehm,
  • Alexander Stoll,
  • Cornelia Silaghi,
  • Annette Pfitzner-Friedrich,
  • Gabriela Knubben-Schweizer,
  • Christina Strube

DOI
https://doi.org/10.1186/s13071-019-3838-4
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Parafilaria bovicola (Nematoda: Filariidae) causes cutaneous bleedings in bovine species. Flies serve as intermediate hosts. In recent years, reports on bovine parafilariosis have become more frequent, corroborating the necessity of reliable diagnostic interventions especially since no molecular or serological test has been available. We aimed to establish a polymerase chain reaction assay to detect DNA of P. bovicola in flies, skin biopsies and serohemorraghic exudates of bleeding spots. Methods PCRs targeting the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer region (ITS) of the ribosomal RNA gene cluster were evaluated for their diagnostic sensitivity as well as performance and specificity on biopsy and serohemorrhagic exudate samples from P. bovicola-infected cattle. Results Using serohemorrhagic exudates (n = 6), biopsies (n = 2) and flies (n = 1), the PCR targeting the cox1 gene resulted in a gel band of almost 700 bp. Cloning, sequencing, and removal of primer sequences yielded a 649-bp fragment of the P. bovicola cox1 gene. The PCR targeting the ITS region showed a band of about 1100 bp. Cloning, sequencing, and removal of primer sequences resulted in a 1083 bp stretch of the P. bovicola ITS region. Testing samples from presumably affected animals, the cox1-PCR resulted in bands with the expected size and they were all confirmed as P. bovicola by sequencing. In contrast, the ITS-PCR proved to be less sensitive and less specific and additionally amplified the ITS region of Musca domestica or buttercup DNA. When analysing for sensitivity, the cox1-PCR yielded visible bands up to 2 ng of genomic DNA, whereas the ITS-PCR produced bands up to 3 ng. In a plasmid dilution series, the minimum number of target DNA copies was 102 for the cox1-PCR and 101 in the ITS-PCR. Conclusions The evaluated cox1-PCR enables reliable detection of P. bovicola DNA in skin biopsies and serohemorrhagic exudates. This PCR and, to a limited extent, the ITS-PCR, may help evaluate different therapeutic approaches. Furthermore, the cox1-PCR may be useful for epidemiological studies on the geographical distribution of P. bovicola. Further understanding of the epidemiology of this parasite will help develop and implement effective control strategies.

Keywords