Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures
Shaokang Ren,
Jun Wang,
Chunyuan Song,
Qian Li,
Yanjun Yang,
Nan Teng,
Shao Su,
Dan Zhu,
Wei Huang,
Jie Chao,
Lianhui Wang,
Chunhai Fan
Affiliations
Shaokang Ren
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Jun Wang
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Chunyuan Song
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Qian Li
School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
Yanjun Yang
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Nan Teng
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Shao Su
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Dan Zhu
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Wei Huang
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Jie Chao
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Lianhui Wang
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Chunhai Fan
School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
Self-assembled DNA nanostructures hold great promise as nanoscale templates for organizing nanoparticles (NPs) with near-atomistic resolution. However, large-scale organization of NPs with high yield is highly desirable for nanoelectronics and nanophotonic applications. Here, we design five-strand DNA tiles that can readily self-assemble into well-organized micrometer-scale DNA nanostructures. By organizing gold nanoparticles (AuNPs) on these self-assembled DNA nanostructures, we realize the fabrication of one- and two-dimensional Au nanostructures in single steps. We further demonstrate the one-pot synthesis of Au metamaterials for highly amplified surface-enhanced Raman Scattering (SERS). This single-step and high-yield strategy thus holds great potential for fabricating plasmonic metamaterials.