Micromachines (Sep 2021)

4-Nitrophenol-Loaded Magnetic Mesoporous Silica Hybrid Materials for Spectrometric Aptasensing of Carcinoembryonic Antigen

  • Jin Zhang,
  • Dianping Tang

DOI
https://doi.org/10.3390/mi12101138
Journal volume & issue
Vol. 12, no. 10
p. 1138

Abstract

Read online

Aptamer- or antibody-based sensing protocols have been reported for detecting carcinoembryonic antigen (CEA), but most exhibit complicated procedures or multiple reactions. In this work, we developed a one-step aptasensing protocol for the spectrometric determination of CEA based on 4-nitrophenol (4-NP)-loaded magnetic mesoporous silica nanohybrids (MMSNs) for bioresponsive controlled-release applications. To fabricate such a responsive–controlled sensing system, single-stranded complementary oligonucleotides relative to the CEA-specific aptamer were first modified on the aminated MMSN. Thereafter, 4-NP molecules blocked the pores with the assistance of the aptamers via a hybridization reaction. The introduced target CEA specifically reacted with the hybridized aptamer, thus detaching from the MMSN to open the gate. The loaded 4-NP molecules were released from the pores, as determined using ultraviolet–visible (UV–vis) absorption spectroscopy after magnetic separation. Under optimum conditions, the absorbance increased with an increase in the target CEA in the sample and exhibited a good linear relationship within the dynamic range of 0.1–100 ng mL−1, with a detection limit of 46 pg mL−1. Moreover, this system also displayed high specificity, good reproducibility, and acceptable accuracy for analyzing human serum specimens, in comparison with a commercialized human CEA-enzyme-linked immunosorbent assay (ELISA) kit.

Keywords