Mathematical Biosciences and Engineering (May 2021)
Secondary structure prediction of protein based on multi scale convolutional attention neural networks
Abstract
To fully extract the local and long-range information of amino acid sequences and enhance the effective information, this research proposes a secondary structure prediction model of protein based on a multi-scale convolutional attentional neural network. The model uses a multi-channel multi-scale parallel architecture to extract amino acid structure features of different granularity according to the window size. The reconstructed feature maps are obtained via multiple convolutional attention blocks. Then, the reconstructed feature map is fused with the input feature map to obtain the enhanced feature map. Finally, the enhanced feature map is fed to the Softmax classifier for prediction. While the traditional cross-entropy loss cannot effectively solve the problem of non-equilibrium training samples, a modified correlated cross-entropy loss function may alleviate this problem. After numerous comparison and ablation experiments, it is verified that the improved model can indeed effectively extract amino acid sequence feature information, alleviate overfitting, and thus improve the overall prediction accuracy.
Keywords