Molecular Neurodegeneration (Aug 2023)

Current views on meningeal lymphatics and immunity in aging and Alzheimer’s disease

  • Shanon Rego,
  • Guadalupe Sanchez,
  • Sandro Da Mesquita

DOI
https://doi.org/10.1186/s13024-023-00645-0
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Alzheimer’s disease (AD) is an aging-related form of dementia associated with the accumulation of pathological aggregates of amyloid beta and neurofibrillary tangles in the brain. These phenomena are accompanied by exacerbated inflammation and marked neuronal loss, which altogether contribute to accelerated cognitive decline. The multifactorial nature of AD, allied to our still limited knowledge of its etiology and pathophysiology, have lessened our capacity to develop effective treatments for AD patients. Over the last few decades, genome wide association studies and biomarker development, alongside mechanistic experiments involving animal models, have identified different immune components that play key roles in the modulation of brain pathology in AD, affecting its progression and severity. As we will relay in this review, much of the recent efforts have been directed to better understanding the role of brain innate immunity, and particularly of microglia. However, and despite the lack of diversity within brain resident immune cells, the brain border tissues, especially the meninges, harbour a considerable number of different types and subtypes of adaptive and innate immune cells. Alongside microglia, which have taken the centre stage as important players in AD research, there is new and exciting evidence pointing to adaptive immune cells, namely T and B cells found in the brain and its meninges, as important modulators of neuroinflammation and neuronal (dys)function in AD. Importantly, a genuine and functional lymphatic vascular network is present around the brain in the outermost meningeal layer, the dura. The meningeal lymphatics are directly connected to the peripheral lymphatic system in different mammalian species, including humans, and play a crucial role in preserving a “healthy” immune surveillance of the CNS, by shaping immune responses, not only locally at the meninges, but also at the level of the brain tissue. In this review, we will provide a comprehensive view on our current knowledge about the meningeal lymphatic vasculature, emphasizing its described roles in modulating CNS fluid and macromolecule drainage, meningeal and brain immunity, as well as glial and neuronal function in aging and in AD.

Keywords