Communications in Analysis and Mechanics (Sep 2023)
Existence of normalized solutions for the Schrödinger equation
Abstract
In this paper, we devote to studying the existence of normalized solutions for the following Schrödinger equation with Sobolev critical nonlinearities. $ \begin{align*} &\left\{\begin{array}{ll} -\Delta u = \lambda u+\mu\lvert u \rvert^{q-2}u+\lvert u \rvert^{p-2}u&{\mbox{in}}\ \mathbb{R}^N,\\ \int_{\mathbb{R}^N}\lvert u\rvert^2dx = a^2, \end{array}\right. \end{align*} $ where $ N\geqslant 3 $, $ 2 < q < 2+\frac{4}{N} $, $ p = 2^* = \frac{2N}{N-2} $, $ a, \mu > 0 $ and $ \lambda\in\mathbb{R} $ is a Lagrange multiplier. Since the existence result for $ 2+\frac{4}{N} < p < 2^* $ has been proved, using an approximation method, that is let $ p\rightarrow 2^* $, we obtain that there exists a mountain-pass type solution for $ p = 2^* $.
Keywords