Water (Feb 2022)

Historical Trends and Projections of Snow Cover over the High Arctic: A Review

  • Hadi Mohammadzadeh Khani,
  • Christophe Kinnard,
  • Esther Lévesque

DOI
https://doi.org/10.3390/w14040587
Journal volume & issue
Vol. 14, no. 4
p. 587

Abstract

Read online

Snow is the dominant form of precipitation and the main cryospheric feature of the High Arctic (HA) covering its land, sea, lake and river ice surfaces for a large part of the year. The snow cover in the HA is involved in climate feedbacks that influence the global climate system, and greatly impacts the hydrology and the ecosystems of the coldest biomes of the Northern Hemisphere. The ongoing global warming trend and its polar amplification is threatening the long-term stability of the snow cover in the HA. This study presents an extensive review of the literature on observed and projected snow cover conditions in the High Arctic region. Several key snow cover metrics were reviewed, including snowfall, snow cover duration (SCD), snow cover extent (SCE), snow depth (SD), and snow water equivalent (SWE) since 1930 based on in situ, remote sensing and simulations results. Changes in snow metrics were reviewed and outlined from the continental to the local scale. The reviewed snow metrics displayed different sensitivities to past and projected changes in precipitation and air temperature. Despite the overall increase in snowfall, both observed from historical data and projected into the future, some snow cover metrics displayed consistent decreasing trends, with SCE and SCD showing the most widespread and steady decreases over the last century in the HA, particularly in the spring and summer seasons. However, snow depth and, in some regions SWE, have mostly increased; nevertheless, both SD and SWE are projected to decrease by 2030. By the end of the century, the extent of Arctic spring snow cover will be considerably less than today (10–35%). Model simulations project higher winter snowfall, higher or lower maximum snow depth depending on regions, and a shortened snow season by the end of the century. The spatial pattern of snow metrics trends for both historical and projected climates exhibit noticeable asymmetry among the different HA sectors, with the largest observed and anticipated changes occurring over the Canadian HA.

Keywords