Nanomaterials (Mar 2019)

Structural Basis of CO2 Adsorption in a Flexible Metal-Organic Framework Material

  • Andrew J. Allen,
  • Winnie Wong-Ng,
  • Eric Cockayne,
  • Jeffrey T. Culp,
  • Christopher Matranga

DOI
https://doi.org/10.3390/nano9030354
Journal volume & issue
Vol. 9, no. 3
p. 354

Abstract

Read online

This paper reports on the structural basis of CO2 adsorption in a representative model of flexible metal-organic framework (MOF) material, Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4] (NiBpene or PICNIC-60). NiBpene exhibits a CO2 sorption isotherm with characteristic hysteresis and features on the desorption branch that can be associated with discrete structural changes. Various gas adsorption effects on the structure are demonstrated for CO2 with respect to N2, CH4 and H2 under static and flowing gas pressure conditions. For this complex material, a combination of crystal structure determination and density functional theory (DFT) is needed to make any real progress in explaining the observed structural transitions during adsorption/desorption. Possible enhancements of CO2 gas adsorption under supercritical pressure conditions are considered, together with the implications for future exploitation. In situ operando small-angle neutron and X-ray scattering, neutron diffraction and X-ray diffraction under relevant gas pressure and flow conditions are discussed with respect to previous studies, including ex situ, a priori single-crystal X-ray diffraction structure determination. The results show how this flexible MOF material responds structurally during CO2 adsorption; single or dual gas flow results for structural change remain similar to the static (Sieverts) adsorption case, and supercritical CO2 adsorption results in enhanced gas uptake. Insights are drawn for this representative flexible MOF with implications for future flexible MOF sorbent design.

Keywords