Applied Sciences (Nov 2021)
Hydrates for Cold Storage: Formation Characteristics, Stability, and Promoters
Abstract
The potential of hydrates formed from R141b (CH3CCl2F), trimethylolethane (TME), and tetra-n-butylammonium bromide/tetra-n-butylammonium chloride (TBAB/TBAC) to be used as working substances for cold storage was investigated to provide a solution for unbalanced energy grids. In this study, the characteristics of hydrate formation, crystal morphology of hydrates, and the stability of hydrate in cyclic formation under 0.1 MPa and at 5 °C were carried out. It found that the ice had a positive effect on the hydrate formation under same conditions. Upon the addition of the ice cube, the induction time of R141b, TME, and TBAB/TBAC hydrates decreased markedly, and significantly high formation rates were obtained. Under magnetic stirring, the rate at which TBAB/TBAC formed hydrates was significantly lower than that when ice was used. In microscopic experiments, it was observed that the TBAB/TBAC mixture formed hydrates with more nucleation sites and compact structures, which may increase the hydrate formation rate. In the multiple cycle formation of TBAB/TBAC hydrates, the induction time gradually decreased with the increasing number of formation cycles and finally stabilized, which indicated the potential of the TBAB/TBAC hydrates for application in cold storage owing to their good durability and short process time for heat absorption and release.
Keywords