PLoS Neglected Tropical Diseases (May 2023)
Can Ivermectin kill Sarcoptes scabiei during the molting process?
Abstract
BackgroundSarcoptes scabiei is a permanent obligate ectoparasite that lives and reproduces in the epidermis of humans and other mammals worldwide. There is a lack of information on the molting process of Sarcoptes scabiei. Ivermectin is widely used to treat Sarcoptes infection in humans and animals, while the survival of molting Sarcoptes mites in the presence of ivermectin is unknown. The aim of the present study is to investigate the molting process of Sarcoptes mites and assess the activity of ivermectin during the molting process of Sarcoptes mites.Methodology/principal findingsmolting Sarcoptes mites were incubated at 35°C and 80% relative humidity and observed hourly until complete molt. Of the 192 molting mites recorded, the longest molt periods for larvae and nymphs were 23 and 30 h, respectively. The activity of ivermectin on molting Sarcoptes mites was also assessed using two concentrations of the drug (0.1 and 0.05 mg/ml). The exposure time for molting mites was determined by 100% mortality of female mites exposed to the solution of ivermectin. While all female mites were killed after exposure to 0.1 mg/ml ivermectin for 2 h and and 0.05 mg/ml for 7 h, 32% and 36% of molting mites survived and successfully molted, respectively.Conclusions/significanceThe present study demonstrated that molting Sarcoptes mites are less susceptible to ivermectin than active mites. As a consequence, mites may survive after two doses of ivermectin given 7 days apart due not only to hatching eggs but also to the resistance of mites during their molting process. Our results provide insight into the optimal therapeutic regimens for scabies and highlight the need for further research on the molting process of Sarcoptes mites.