Energies (Aug 2023)

Modal Decomposition Study of the Non-Reactive Flow Field in a Dual-Swirl Combustor

  • Xiangzhou Feng,
  • Jianqin Suo,
  • Qiandong Li,
  • Longxi Zheng

DOI
https://doi.org/10.3390/en16176182
Journal volume & issue
Vol. 16, no. 17
p. 6182

Abstract

Read online

The modal decomposition study of the non-reactive flow field in a dual-swirl combustor is investigated through the large eddy simulation. The formation mechanism and function of various recirculation zones are elaborated by analyzing the time-averaged and instantaneous velocity contours of the center section. The precessing vortex core (PVC) is first visualized by the pressure iso-surface, and the evolution process is presented. Different dimensionality reduction methods are adopted to identify the coherent structures from the flow field. The most energetic spatial structure corresponding to the PVC and its second-order harmonic structure is extracted by the classical proper orthogonal decomposition (POD). The coherent structures with high frequency have relatively low energy content. In addition, a spectral proper orthogonal decomposition (SPOD) method, which can implement spatial-temporal decomposition simultaneously, is introduced to obtain the energy-based spatial structures at all characteristic frequencies. A triple-helix with azimuth wave number m = 3 and a quadruple-helix with azimuth wave number m = 4 are discovered as the third-order and the fourth-order harmonics of single-helix, respectively.

Keywords