Ccdc85c-Par3 condensates couple cell polarity with Notch to control neural progenitor proliferation
Jiawen Xu,
Xin Deng,
Aihong Gu,
Yuqun Cai,
Yunyun Huang,
Wen Zhang,
Yiqing Zhang,
Wenyu Wen,
Yunli Xie
Affiliations
Jiawen Xu
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Xin Deng
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Aihong Gu
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Yuqun Cai
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Yunyun Huang
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Wen Zhang
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Yiqing Zhang
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
Wenyu Wen
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; The Shanghai Key Laboratory of Medical Epigenetics, National Center for Neurological Disorders, Fudan University, Shanghai 200032, China; Corresponding author
Yunli Xie
Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Corresponding author
Summary: Polarity proteins regulate the proliferation and differentiation of neural progenitors to generate neurons during brain development through multiple signaling pathways. However, how cell polarity couples the signaling pathways remains unclear. Here, we show that coiled-coil domain-containing protein 85c (Ccdc85c) interacts with the polarity protein Par3 to regulate the proliferation of radial glial cells (RGCs) via phase separation coupled to percolation (PSCP). We find that the interaction with Ccdc85c relieves the intramolecular auto-inhibition of Par3, which leads to PSCP of Par3. Downregulation of Ccdc85c causes RGC differentiation. Importantly, the open conformation of Par3 facilitates the recruitment of the Notch regulator Numb to the Par3 condensates, which might prevent the attenuation of Notch activity to maintain RGC proliferation. Furthermore, ectopic activation of Notch signaling rescues RGC proliferation defects caused by the downregulation of Ccdc85c. These results suggest that Ccdc85c-mediated PSCP of Par3 regulates Notch signaling to control RGC proliferation during brain development.