Forests (May 2015)

Lichen Monitoring Delineates Biodiversity on a Great Barrier Reef Coral Cay

  • Paul C. Rogers,
  • Roderick W. Rogers,
  • Anne E. Hedrich,
  • Patrick T. Moss

DOI
https://doi.org/10.3390/f6051557
Journal volume & issue
Vol. 6, no. 5
pp. 1557 – 1575

Abstract

Read online

Coral islands around the world are threatened by changing climates. Rising seas, drought, and increased tropical storms are already impacting island ecosystems. We aim to better understand lichen community ecology of coral island forests. We used an epiphytic lichen community survey to gauge Pisonia (Pisonia grandis R.BR.), which dominates forest conditions on Heron Island, Australia. Nine survey plots were sampled for lichen species presence and abundance, all tree diameters and species, GPS location, distance to forest-beach edge, and dominant forest type. Results found only six unique lichens and two lichen associates. A Multi-Response Permutation Procedures (MRPP) test found statistically distinct lichen communities among forest types. The greatest group differences were between interior Pisonia and perimeter forest types. Ordinations were performed to further understand causes for distinctions in lichen communities. Significant explanatory gradients were distance to forest edge, tree density (shading), and Pisonia basal area. Each of these variables was negatively correlated with lichen diversity and abundance, suggesting that interior, successionally advanced, Pisonia forests support fewer lichens. Island edge and presumably younger forests—often those with greater tree diversity and sunlight penetration—supported the highest lichen diversity. Heron Island’s Pisonia-dominated forests support low lichen diversity which mirrors overall biodiversity patterns. Lichen biomonitoring may provide a valuable indicator for assessing island ecosystems for conservation purposes regionally.

Keywords