PLoS ONE (Jan 2020)

Performance of a multiplexed amplicon-based next-generation sequencing assay for HLA typing.

  • Chang Liu,
  • Brian F Duffy,
  • Eric T Weimer,
  • Maureen C Montgomery,
  • Jo-Ellen Jennemann,
  • Rachel Hill,
  • Donna Phelan,
  • Lindsay Lay,
  • Bijal A Parikh

DOI
https://doi.org/10.1371/journal.pone.0232050
Journal volume & issue
Vol. 15, no. 4
p. e0232050

Abstract

Read online

BackgroundNext-generation sequencing (NGS) has enabled efficient high-resolution typing of human leukocyte antigen (HLA) genes with minimal ambiguity. Most commercially available assays amplify individual or subgroup of HLA genes by long-range PCR followed by library preparation and sequencing. The AllType assay simplifies the workflow by amplifying 11 transplant-relevant HLA genes in one PCR reaction. Here, we report the performance of this unique workflow evaluated using 218 genetically diverse samples.MethodsFive whole genes (HLA-A/B/C/DQA1/DPA1) and six near-whole genes (HLA-DRB1/DRB345/DQB1/DPB1; excluding exon 1 and part of intron 1) were amplified in a multiplexed, long-range PCR. Manual library preparation was performed per manufacturer's protocol, followed by template preparation and chip loading on the Ion Chef, and sequencing on the Ion S5 sequencer. Pre-specified rules for quality control and repeat testing were followed; technologists were blinded to the reference results. The concordance between AllType and reference results was determined at 2-field resolution. We also describe the ranges of input DNA and library concentrations, read number per sample and per locus, and key health metrics in relation to typing results.ResultsThe concordance rates were 98.6%, 99.8% and 99.9% at the sample (n = 218), genotype (n = 1688), and allele (n = 3376) levels, respectively. Three genotypes were discordant, all of which shared the same G group typing results with the reference. Most ambiguous genotypes (116 out of 144, 80.6%) were due to the lack of exon 1 and intron 1 coverage for HLA-DRB1/DRB345/DQB1/DPB1 genes. A broad range of input DNA concentrations and library concentrations were tolerated. Per sample read numbers were adequate for accurate genotyping. Per locus read numbers showed some inter-lot variations, and a trend toward improved inter-locus balance was observed with later lots of reagents.ConclusionThe AllType assay on the Ion Chef/Ion S5 platform offers a robust and efficient workflow for clinical HLA typing at the 2-field resolution. The multiplex PCR strategy simplifies the laboratory procedure without compromising the typing accuracy.