BMC Plant Biology (Dec 2024)
Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms
Abstract
Abstract Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains. The comprehensive evaluation indicates that the ZJWZ strain holds potential as a preferred parental material for future resistance breeding. Furthermore, PAL gene expression was strongly positively correlated with flavonoid and phenol contents, highlighting its role in the stress response through the phenylpropanoid-flavonoid pathway. This study contributes to the standardization of the production and breeding of superior strains of T. hemsleyanum. It also lays the foundation for investigating how plants react to environmental stressors.
Keywords