Atmosphere (Dec 2021)
Environmental Benefits of Ultra-Low Emission (ULE) Technology Applied in China
Abstract
Seven scenarios were designed to study the national environmental benefits of ULE in coal-fired power plants (CPPs), ULE in industrial coal burning (ICB) and NH3 emission reduction by using the GEOS-Chem model. The results showed that although the CPPs have achieved the ULE transformation target, the PM2.5 concentration across the country has decreased by 4.8% (1.4 μg/m3). Due to the complex non-linear chemical competition mechanism among nitrate and sulfate, the average concentration of nitrate in the country has increased by 1.5% (0.1 μg/m3), which has reduced the environmental benefits of the power plant emission reduction. If the ULE technology is applied to the ICB to further reduce NOx and SO2, although the PM2.5 concentration can be reduced by 10.1% (2.9 μg/m3), the concentration of nitrate will increase by 2.7% (0.2 μg/m3). Based on the CPPs-ULE, NH3 emissions reduced by 30% and 50% can significantly reduce the concentration of ammonium and nitrate, so that the PM2.5 concentration is decreased by 11.5% (3.3 μg/m3) and 16.5% (4.7 μg/m3). Similarly, based on the CPPs-ICB-ULE, NH3 emissions can be reduced by 30% and 50% and the PM2.5 concentration reduced by 15.6% (4.4 μg/m3) and 20.3% (5.8 μg/m3). The CPPs and ICB use the ULE technology to reduce NOx and SO2, thereby reducing the concentration of ammonium and sulfate, causing the PM2.5 concentration to decline, and NH3 reduction is mainly achieved through reducing the concentration of ammonium and nitrate to reduce the concentration of PM2.5. In order to better reduce the concentration of PM2.5, NOx, SO2 and NH3 emission reduction control measures should be comprehensively considered in different regions of China. By comprehensively considering the economic cost and environmental benefits of ULE in ICB and NH3 emission reduction, an optimal haze control scheme can be determined.
Keywords