Advances in Polymer Technology (Jan 2019)
Quality Indexes Design for Online Monitoring Polymer Injection Molding
Abstract
Quality control is a crucial issue in the injection molding process with target of obtaining a high yield rate and reducing production cost. Consequently, effective methods for monitoring the injection conditions (e.g., pressure, velocity, and temperature) in real-time and adjusting these conditions adaptively as required to ensure a consistent part quality are essential. This study proposes a quality index based on the clamping force increment during the injection cycle, as determined by four strain gauges attached to the tie bars of the injection molding machine. Also, various quality indexes for online quality monitoring and prediction purposes based on the pressure, viscosity, and energy features extracted from the pressure profiles obtained at the load cell, nozzle, and molding cavity, respectively, are compared. The feasibility of the proposed quality indexes is investigated experimentally for various settings of the barrel temperature, back pressure, and rotational speed of the plasticizing screw. It is shown that all of the quality indexes are correlated with the injection-molded quality and hence provide a feasible basis for the realization of an on-line quality monitoring and control system. Particularly, the tie-bar elongation quality index requires no modification or invasion of the injection molding system or cavity and hence provides a particularly attractive solution for monitoring and controlling the part quality.