Energy Science & Engineering (Aug 2024)
Feasibility analysis of hybrid photovoltaic, wind, and fuel cell systems for on–off‐grid applications: A case study of housing project in Bangladesh
Abstract
Abstract This study investigates the viability of hybrid photovoltaic (PV), wind, and fuel cell (FC) systems for on‐grid and off‐grid operations for the Ashrayan‐3 housing project in Bangladesh, with an increased focus on sustainable energy solutions. Motivated by the issue of the delivery of proper and sustainable energy services to remote locations, we conducted an extensive analysis of load demand and found that an average daily demand of 46,176.65 kWh exists, with a peak load of 4852.8 kW. In this research, the HOMER software has been used to make a simulation of five different hybrid system configurations with differing mixes of renewable technologies. From the analyses, the systems based 100% on renewable resources suffer more initial capital costs, with a total net present cost increase of up to 20%, in comparison to conventional systems. On the other hand, the systems give much lower operational costs and cost of energies (COEs) of a minimum of $0.0253/kWh, reported from the on‐grid PV‐based system. On the other hand, the off‐grid PV–FC–wind turbine system showed a COE of $0.286/kWh, along with a decrease in CO2 emissions by about 15,000 kg/year, showing a 30% decrease, compared with on‐grid systems. The results form a basis for the conclusion that such hybrid renewable energy systems are both economically and environmentally feasible. They can reduce COEs by up to 70% in off‐grid systems. This proves that the quality of life and energy security in developing regions will be highly increased, supporting the goals of sustainable development.
Keywords