ChemEngineering (Jul 2024)
Integration of Ion Exchange—AOP—Biological System for the Treatment of Real Textile Wastewater
Abstract
Real textile wastewater (RTWW) poses significant environmental challenges. RTWW typically contains high levels of organic compounds, such as dyes, as well as inorganic substances like salts. These contaminants can harm aquatic life when released into water bodies without appropriate treatment. RTWW was subjected to a series of sequential treatments: exchange resins for removing ions, advanced oxidation with bicarbonate-activated peroxide to degrade organic matter, and a biological treatment based on the Zahn–Wellens test to remove remaining chemical oxygen demand (COD) The advanced oxidation process based on the activation of H2O2 with NaHCO3 (catalyzed with cobalt impregnated on a pillared clay, Co/Al–PILC)) was optimized using central composite design (CCD) and response surface methodology (RSM). After the process integration, reductions in ion concentrations, chemical oxygen demand (COD), and total organic carbon content (TOC) were achieved. Reduced hardness (99.94%) and ions (SO42− and acid black 194 dye of 99.88 and 99.46%, respectively), COD (96.64%), and TOC (96.89%), guaranteeing complete treatment of RTWW, were achieved. Additionally, the biodegradability index of RTWW increased from 0.28 ± 0.01 to 0.90 ± 0.01, and phytotoxicity was reduced, going from a phytotoxic that inhibited the germination of lettuce seeds to a phytostimulant after biological treatment with activated sludge.
Keywords